首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1617篇
  免费   203篇
  国内免费   71篇
  2024年   5篇
  2023年   53篇
  2022年   13篇
  2021年   43篇
  2020年   87篇
  2019年   87篇
  2018年   67篇
  2017年   75篇
  2016年   67篇
  2015年   75篇
  2014年   91篇
  2013年   100篇
  2012年   57篇
  2011年   84篇
  2010年   54篇
  2009年   106篇
  2008年   108篇
  2007年   90篇
  2006年   66篇
  2005年   82篇
  2004年   77篇
  2003年   44篇
  2002年   55篇
  2001年   44篇
  2000年   33篇
  1999年   30篇
  1998年   51篇
  1997年   19篇
  1996年   23篇
  1995年   17篇
  1994年   12篇
  1993年   2篇
  1992年   9篇
  1991年   9篇
  1990年   8篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1891条查询结果,搜索用时 15 毫秒
1.
Hydra is emerging as a model organism for studies of ageing in early metazoan animals, but reef corals offer an equally ancient evolutionary perspective as well as several advantages, not least being the hard exoskeleton which provides a rich fossil record as well as a record of growth and means of ageing of individual coral polyps. Reef corals are also widely regarded as potentially immortal at the level of the asexual lineage and are assumed not to undergo an intrinsic ageing process. However, putative molecular indicators of ageing have recently been detected in reef corals. While many of the large massive coral species attain considerable ages (>600 years) there are other much shorter‐lived species where older members of some populations show catastrophic mortality, compared to juveniles, under environmental stress. Other studies suggestive of ageing include those demonstrating decreased reproduction, increased susceptibility to oxidative stress and disease, reduced regeneration potential and declining growth rate in mature colonies. This review aims to promote interest and research in reef coral ageing, both as a useful model for the early evolution of ageing and as a factor in studies of ecological impacts on reef systems in light of the enhanced effects of environmental stress on ageing in other organisms.  相似文献   
2.
3.
Trap sampling over reefs in deep (mean = 20 m) and shallow (mean = 10 m) waters along c. 1500 km of coastline in tropical north‐western Australia during both day and night and in wet and dry periods yielded 23 377 fishes, representing 32 families, 58 genera and 119 species. Individuals of the Serranidae, Lutjanidae, Lethrinidae and Carangidae contributed 88·9% to the total catch. The ichthyofaunal compositions of the Kimberley, Canning and Pilbara bioregions were relatively discrete. Species composition was influenced far more by location (latitude) than by water depth, period and time of day, and underwent a gradational change southwards. The latter change reflected differences in the trends exhibited by the relative abundances of certain species with increasing latitude and the confinement of other species largely to particular regions. The three most abundant species, i.e. Lethrinus sp. 3, Lutjanus carponotatus and Lethrinus laticaudis contributed 34·8, 20·8 and 11·6% to the total catch, respectively. The first species was rarely recorded in the two most northern locations and was abundant in the four most southern locations, whereas the last two species were relatively more abundant in northern than in southern locations. Lutjanus bitaeniatus and Lutjanus johnii were found exclusively at the two locations in the Kimberley region, whereas Abalistes stellatus, Pentapodus emeryii and Lethrinus nebulosus were not caught in this region but were found in both locations of the Canning and Pilbara regions. The species composition in deep and shallow waters at each location almost invariably differed significantly between day and night and between dry and wet periods, with species such as L. bitaeniatus, L. johnii, Lutjanus sebae and A. stellatus being more abundant over deep reefs, whereas L. carponotatus, L. laticaudis, Siganus fuscescens and Lethrinus lentjan were more numerous over shallow reefs. Species such as L. johnii and Lethrinus atkinsoni were relatively more important in night‐time than daytime catches, whereas the reverse applied to Lethrinus lentjan, L. laticaudis and Choerodon cyanodus. Lethrinus sp. 3 and L. laticaudis were relatively more important in catches during the dry than wet period.  相似文献   
4.
A commercially important coral-reef fish, the spangled emperor Lethrinus nebulosus, settles into seagrass beds at the end of its pelagic larval phase, but the mechanism for locating these beds is unknown. To investigate this mechanism we first used a wide-choice, ex situ setup to examine the ability of captivity-reared naïve L. nebulosus settlers to select their first benthic habitat by reference to chemical cues. Second, we examined the morphology and ultrastructure of the nasal olfactory organ in settling L. nebulosus juveniles. We obtained the first evidence of a tropical seagrass-settling coral reef fish that can use chemical environmental cues in selecting its first benthic habitat at ranges up to at least 2 m. The L. nebulosus settlers exhibited a well developed pair of nasal olfactory organs, positioned in nares on the dorsal side of the head. These organs were elliptical radial rosettes, one in each of the olfactory chambers, and each comprised 12 lamellae, six on each side of a midline raphe, which were totally covered with sensory and non-sensory cilia, except for the margins. This type of cilia distribution is thought to indicate an acute sense of smell. The olfactory epithelium contained mature and immature ciliated receptor neurons bearing three to five cilia, and a second type of receptor neuron bearing six to eight microvilli.  相似文献   
5.
Numerous deep‐sea species have apparent widespread and discontinuous distributions. Many of these are important foundation species, structuring hard‐bottom benthic ecosystems. Theoretically, differences in the genetic composition of their populations vary geographically and with depth. Previous studies have examined the genetic diversity of some of these taxa in a regional context, suggesting that genetic differentiation does not occur at scales of discrete features such as seamounts or canyons, but at larger scales (e.g. ocean basins). However, to date, few studies have evaluated such diversity throughout the known distribution of a putative deep‐sea species. We utilized sequences from seven mitochondrial gene regions and nuclear genetic variants of the deep‐sea coral Paragorgia arborea in a phylogeographic context to examine the global patterns of genetic variation and their possible correlation with the spatial variables of geographic position and depth. We also examined the compatibility of this morphospecies with the genealogical‐phylospecies concept by examining specimens collected worldwide. We show that the morphospecies P. arborea can be defined as a genealogical‐phylospecies, in contrast to the hypothesis that P. arborea represents a cryptic species complex. Genetic variation is correlated with geographic location at the basin‐scale level, but not with depth. Additionally, we present a phylogeographic hypothesis in which P. arborea originates from the North Pacific, followed by colonization of the Southern Hemisphere prior to migration to the North Atlantic. This hypothesis is consistent with the latest ocean circulation model for the Miocene.  相似文献   
6.
Feasible mechanisms for algal digestion in the king angelfish   总被引:1,自引:0,他引:1  
To determine the ability of the king angelfish Holacanthus passer to digest algae, three algal species were immersed in acidic conditions similar to that found in the stomach of fish. Only one of them was not susceptible to acidic lysis; two were affected after 40 and 60 min at pH 2·0. King angelfish have an expanded region of the intestine called here the hindgut chamber (HC) containing populations of micro-organisms. Some of these micro-organisms have the capacity to grow in cellulose, agar, and alginic acid; the main components of algal cell walls. Micro-organisms grew in carboxymethylcellulose cultures under aerobic and micro-aerobic conditions. The HC is highly vascularized, which could increase absorptive efficiency of material digested in it.  相似文献   
7.
 The fully enclosed Taiaro lagoon is hypersaline (42.5 psu) and non-tidal; constant salinity and water level result from strong evaporation balanced by low percolation through the lagoon floor. Seawater can flow over the atoll rim during exceptionally high seas and may then replenish lagoonal communities with propagules of oceanic origin. The distinctive water chemistry of the lagoon suggests a possible way of identifying these immigrants. We established this potential by analysing stable isotopes of carbon and oxygen in the recent growth layers of otoliths of two adult reef fishes, Chaetodon ulietensis and Acanthurus triostegus, collected from both sides of the atoll rim. Fish from the two locations were discriminated by their isotopic signatures, suggesting that analysis of the microchemical signatures deposited during the larval development could be used in future work to determine which individuals and species complete their life-cycles in this unusual lagoon. Accepted: 28 August 1997  相似文献   
8.
9.
10.
Clonality is a common feature of plants and benthic marine organisms. In some cases clonal propagation results in a modest increase in population density, while in other cases dense populations may be generated by the propagation of only a few clones. We analyzed the population structure of the clonal gorgonian Plexaura kuna across several reef habitats with a range of disturbance regimes in the San Blas Islands, Panama, and the Florida Keys, U.S.A. Using multilocus DNA fingerprinting to distinguish clones, we estimated that clones ranged in size from single individuals to 500 colonies. The number of genotypes identified on nine reefs ranged from three to 25. Population density and clonal structure varied markedly among reefs with GO:GE ranging from 0.03 to 1.00. On some reefs vegetative reproduction transformed P. kuna from a rare species to the numerically most abundant gorgonian. The effect of clonal propagation on P. kuna population structure was dependent on interactions between fragmentation and the reef environment (disturbance regime, substratum). We present a generalized model relating population structure of clonal species to disturbance and the mode of vegetative propagation. Disturbance promotes colony propagation and skews the size-frequency distribution of clones among P. kuna and many species that propagate via fragmentation. Propagation of these species is promoted by disturbance (disturbance sensitive), and they tend to have clones that are dispersed across local sites. Species that fragment and have dispersed clones, have high genotypic diversity in habitats with low levels of disturbance. Genotypic diversity then decreases at intermediate disturbance and increases again at the highest disturbance levels. Clonal species that do not rely on disturbance for vegetative propagation (disturbance insensitive) generally do not disperse and form aggregated clones. Among these taxa disturbance has a greater affect on individual survival than on propagation. Genotypic diversity is directly related to the level of disturbance until very high levels of disturbance, at which time genotypic diversity declines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号